Tag Archives: task-oriented psychology

Overcoming loser philosophy: Comments on Käufer and Chemero’s Phenomenology: An Introduction

If you are studying affordances, or studying the role of the body in perception and cognition, then you ‘are not merely influenced by phenomenology,’ you are ‘doing phenomenology, insofar as [you] are pursuing the basic ideas and insights this tradition was founded on.’ So claim Stephan Käufer and Tony Chemero (K&C) at the start of their new bookPhenomenology: An Introduction (2015).

Now, one would be forgiven for thinking it’s safe to ignore this book, on the grounds that a) it’s got the word ‘Phenomenology’ in the title, and b) it’s got the words ‘An Introduction’ in the title. But don’t let’s get hung up on those two details. K&C are pursuing a serious project here. They aim to show that the phenomenological tradition is alive, and that it provides the necessary foundation for embodied cognition research. The message of the book might be summarized thus: Nothing in embodied cognition makes sense except in the light of lived experience. It’s a good message, and I hope people take notice.

I am not going to summarize, in this post, all of the book’s discussion of the history of phenomenology. The book does a nice job of covering the major thinkers while also weaving in the story of how psychology emerges as a separate discipline seeking to differentiate itself from philosophy, without ever quite succeeding. There are chapters on Kant and Wundt, then Husserl, Heidegger, the Gestalt psychologists, Merleau-Ponty, Sartre and Beauvoir, then James Gibson, Hubert Dreyfus, and a final chapter giving a brief overview of the current state of play in embodied and enactive cognitive science. I will quickly go over a couple of the important ideas from the Merleau-Ponty chapter, then I’ll get into K&C’s discussion of what, in their view, are the most interesting current issues in the field.

Merleau-Ponty and the lived body

A hand holding the handle of a coffee cup

Can you really be sure that that coffee cup has a backside? (Source)

Husserl spends a lot of time fretting about this kind of question: How can it be that, when we look at a tree, we seem to experience the tree as having a backside, even though, right now, we can only see the front? Husserl’s solution is to posit that the tree that we experience is a mental entity, an intentional object: we see the tree as whole because we’re not directly experiencing the tree itself, we’re experiencing a copy of the tree that’s internal to our consciousness. Husserl sees this as a methodological move that allows him to ignore the question of whether the tree really does have a backside or not, or, for that matter, whether there’s any tree there at all.

Merleau-Ponty provides a different way out of the problem. He distinguishes between the lived body, which he also calls the habit body, and the objective body, or the body as an object. He uses this distinction to explain what’s going on in phantom limb cases where people who have lost a limb report still feeling pain or sensation at the location where the limb used to be. The way we normally experience the world, Merleau-Ponty says, is as a lived body that exhibits skills and habits. In phantom limb cases, the skills and habits have formed in the presence of the limb, and these skills and habits remain intact even though the objective limb itself is no longer present. The loss of the limb means that the habit body is no longer in harmony with the objective body. Now when the individual encounters a situation which used to involve the limb, the situation may still be perceived as one in which the old action is possible, but the objective body no longer supports this action.

To return to Husserl’s problem, Merleau-Ponty points out that when we encounter an object from a particular aspect, we do not do so as disembodied observers, but precisely as lived bodies. This allows us to say that when we encounter a tree, or a coffee cup, we experience these objects as having a backside to the extent that our bodies are disposed to act on the whole object. We see a tree that we can walk around, or a cup that we can wrap our fingers around. The backside is not in our perception, but in the complete act of engaging with the world.

Incidentally, this also provides the solution to a problem Chemero raised in his previous book (though K&C do not acknowledge this): how do we perceive that a beer can contains drinkable beer, if we are not representing the contents? Chemero (2009, 118) uses this example to motivate the claim that perception must be grounded in constraints and conventions. It is held that the label on the beer can is conventionally related to the presence of beer. We, as perceivers, have access both to the convention and to the label, and together these indicate the presence of beer inside the can. But Merleau-Ponty’s account of the lived body renders unnecessary any such appeal to conventions. We don’t need to perceive the beer itself, any more than we need to perceive the back of the coffee cup. Our bodily skills mean that we can just act in the presence of the beer can. And sure, it might turn out, after all, that the beer can contains sour milk, or that the coffee cup doesn’t actually have a backside. But such considerations do not normally enter into our activities. We do not live in a world where we have had to interact with milk-containing beer cans or backside-less coffee cups, so there’s no reason why our habit body would come to be shaped by such eventualities. In general, we get along just fine.

Now onto the current problems in the field. First: affordances.

Affordances, invitations, and the frame problem in ecological psychology

Affordances, it is generally said, are opportunities to act on the environment. But that raises a question: how is it that only some affordances come to be selected for action? It would seem to be the case that a detached observer is required to do the selecting—some mental controller that sits inside the organism and is able to assess the available options. This is a problem that Gibson was aware of, as shown in this passage that K&C quote twice (Gibson, 1979, 225): ‘The rules that govern behavior are not like laws enforced by an authority or decisions made by a commander; behavior is regular without being regulated. The question is how this can be.’ (Another way to put this is to say that the ecological approach provides a theory of the structure available to perception, but not a theory of behaviour as such; see this post for discussion.)

The way K&C present this is as a version of the frame problem—a problem in AI research that gave rise to much philosophical bellyaching in the 1980s, most notably from Dan Dennett. The problem is this: how can a robot ever be expected to choose its next action, given the infinite number of facts that the robot could, in principle, take into account before making its selection? As K&C see it, the only way out of this problem is to appeal to dynamical systems. An actor is a dynamical system. And the actor is nested inside a larger dynamical system—its environment. If the actor is a dynamical system then it does not need to mentally entertain any of the possible actions available to it; rather, it just acts, and it learns by changing over time. Engaging with the world not only changes the world, it also changes the internal dynamics of the actor. The outcomes of actions can have the effect of reconfiguring the attractor states within the actor’s nervous system. Here K&C appeal to Walter Freeman’s work on the neural dynamics of the rabbit olfactory bulb. If the rabbit experiences a particular scent and subsequently gets food, then this will have the effect of subtly re-configuring the rabbit’s nervous system, which will affect how the rabbit responds to the same scent the next time it encounters it (207). The frame problem dissolves because now everything is dynamic. (But I’ll have more to say about the frame problem below.)

In order to fix how we talk about affordances, K&C recommend that we follow Withagen et al (2012) in making a distinction between mere affordances and invitations. Affordances are the possibilities to act, which are always infinite in number; invitations (a term borrowed from Merleau-Ponty) are the subset of affordances that stand out at a given moment as live options. Withagen et al make this distinction in the context of a discussion of agency. K&C use it to appeal again to dynamical systems. K&C discuss the example of someone engaged in the activity of building a bookcase. The bookcase builder does not attend to an infinite world of possibilities, but only to aspects of her environment that are relevant for her ongoing project. The dynamics of this organism–environment system (builder plus bookcase-parts plus tools and so forth) have become self-organized into ‘a temporary, special-purpose dynamical system’ (203), one in which only certain affordances actually invite behaviour.

The future of phenomenological cognitive science

This is all well and good as a description of what it’s like to be a living being engaged in activities in the world. But where does it get us? How can we turn the insights of phenomenologists into a productive programme of empirical research?

How K&C propose to do this rests, in large part, on a phrase that they borrow from Shaun Gallagher and Dan Zahavi (2008), who say that, in their empirical studies of behaviour, researchers should front-load phenomenology. Unfortunately, it is not very clear exactly what work this phrase is supposed to be doing. K&C define front-loading phenomenology as ‘designing scientific experiments specifically in order to test posits concerning phenomenology’ (218). This suggests that phenomenology itself should be the subject matter of the research. But this seems at odds with what Gallagher and Zahavi themselves say (2008, 38; emphasis added): ‘The idea is to front-load phenomenological insights into the design of experiments, that is, to allow the insights developed in phenomenological analyses to inform the way experiments are set up.’ Here, it seems that phenomenology is not the subject matter of the research per se, but is part of the experimental methodology: thinking in terms of phenomenology is just part of the experimenter’s toolkit for setting up useful experiments. In their own recommendations for conducting future research, K&C seem to vacillate between two different types of strategy, neither of which seems to exactly match what Gallagher and Zahavi are after.

Strategy 1: Directly investigate stuff that phenomenologists have actually said. An example of research using this strategy is Chemero’s work with Dobri Dotov (Dotov et al, 2010), on how equipment can go from being ready-to-hand to being unready-to-hand. In the experiment, subjects are asked to play a computer game in which they have to move a mouse cursor about on a screen. At some point in the game, the experimenter interrupts the link between the mouse movement and the cursor movement. This is like what happens when you get a bit of water on your laptop trackpad, or in the old days when you got a bit of fluff taffled up in the mouse’s rollerball. As we know from having experienced this kind of thing, the disruption is apt to put us off what we had just been doing and may well cause us to flail about in an attempt to regain control of the situation. Dotov et al present this in explicitly Heideggerian terms, as a disruption that shatters our smooth coping with equipment in the environment. And they have a way of quantifying this: the disruption goes along with a disruption of the subject’s movement dynamics, which move from exhibiting pink noise (or 1/f noise, which is assumed to be characteristic of smooth coping) towards exhibiting white noise (characteristic of random movement, or flailing about). This is neat as a ‘demonstration’ of an idea from Heidegger’s phenomenology. But it is not clear how this is supposed to serve as a model for doing cognitive science in general. Are we to restrict our empirical efforts to attempting to prove Heidegger correct?

Strategy 2: Reduce everything to maths, but do so in a way that you hope is consistent with phenomenological theorizing. The second strategy is to subsume everything under the logic of dynamical systems modelling. This is defended on the grounds that complex systems are inclined to ‘self-organize and so have a tendency to behave like much simpler systems,’ and therefore ‘one will often be able to model these systems in terms of extremely simple functions, with only a few easily observable parameters’ (200). And the logic of these systems means that, in principle, it’s possible to study any phenomenon, from the level of the cell to the level of whole societies, all in terms of relatively simple dynamical equations. One might object that by reducing everything to maths, you have taken yourself outside of the realm of phenomenology altogether. Equations don’t have feelings. And there’s nothing that it’s like to be an equals sign. More to the point, there’s nothing that it’s like to be a cell or a basketball team either. Experience only operates at the level of individual organisms. By collapsing everything into mathematics, have we not lost sight of the very thing—lived experience—that caused us to so admire the phenomenologists in the first place? Surely we’re owed at least a hint of an explanation as to why it’s desirable to model experience-involving processes in exactly the same way as non-experience-involving ones. But according to K&C, there is no problem here: it’s perfectly possible to do dynamical systems modelling and still be in the business of successfully front-loading your phenomenology (201). What’s important is that the way you choose what phenomenon you are going to model in the first place should be informed by a suitably phenomenological worldview.

I have to say, I think K&C give a fair account of the current state of play within phenomenologically-informed cognitive science (that is, in enactivst and dynamical systems research). Still, neither of these two strategies strikes me as being particularly attractive.

The second strategy, in particular, seems to be too much in awe of the frame problem. I suspect that part of the motivation for trying to reduce everything to dynamical systems explanations is the worry that unless everything is expressed in the same language (mathematics) then we will never exorcise the creeping spectre of dualism and we’ll be forever stuck with some version of the frame problem. But there’s a reason why the frame problem originated where it did—in the field of artificial intelligence research. The old project in AI had the goal of building a robot with the capacity to act autonomously in a natural environment. In order to achieve that, AI researchers were going to have to be able to build a robot that could select its actions from a seemingly infinite set of possibilities. But why should we non-AI researchers take that as a model for our own psychological programme? I just don’t buy that building a working model of a behaving, living system is a realistic goal for psychology. Or a useful one. I’m much more interested in using psychology as a set of tools for intervening in real-world problems: how can we design cities that are better adapted to how we want to live, or educational resources that are better suited to how we learn, or clinical environments that better draw out the capacities of people we currently deem to be mentally ill? As such, I just don’t care about the frame problem. And neither should you!

What I’d like to see developed more is a strategy more closely aligned to that definition from Gallagher and Zahavi: to front-load phenomenology is to use phenomenology as a tool for designing experiments that can actually inform us about how we engage in specific activities—a tool that will allow us to pursue genuinely useful research. This is what Andrew was getting at in this post on dynamical mechanistic explanations. And I’ve argued (Baggs, 2014) that the appropriate way to conduct research is to take a task-oriented approach; that is, we can identify an activity that is of interest to us, from the perspective of outside analysts, but to do so we must identify a dynamic that is meaningful from the perspective of the actor. Taking this kind of approach allows researchers to study phenomena—such as steering a car round a corner, or learning to walk—that are phenomenological through and through. (See Wilson and Golonka, 2013, which sets out the general strategy for actually employing the task-oriented methodology.) The task-oriented approach seems much more worthy of the label ‘phenomenological’ than does the reduce-everything-to-maths approach.

But this is an argument for the future. For now, I’ll say that I very much enjoyed reading K&C’s book. What the book does well is it places current research in embodied and enactive cognitive science in a long-ish historical context. In doing so, the authors reveal that, far from being ‘radical’, in the sense of being outlandish and hopelessly outside the mainstream, these approaches are grounded in a solid phenomenological tradition. We inheret from Heidegger and from Merleau-Ponty a view of action as skilled engagement with the world, by a lived body. Indeed, taking this long view, it is the cognitivist AI programme that turns out to be the historical aberration. Hubert Dreyfus drily explains this in an excellent interview from 2005 (K&C also quote a different passage from this interview):

The people in the AI lab, with their “mental representations,” had taken over Descartes and Hume and Kant, who said concepts were rules, and so forth. And far from teaching us how we should think about the mind, AI researchers had taken over what we had just recently learned in philosophy was the wrong way to do it. The irony is that the year that AI (artificial intelligence) was named by John McCarthy was the very year that Wittgenstein’s Philosophical Investigations came out against mental representations. [Dreyfus may be a little muddled on the dates here—EB] (Heidegger had already done so in 1927 with Being and Time.) So, the AI researchers had inherited a lemon. They had taken over this loser philosophy! If they had known philosophy, they could’ve predicted, like me, that it was a hopeless research program, but they took Cartesian philosophy and turned it into a research program. Anybody who knew enough philosophy could’ve predicted it was going to fail. But nobody else paid any attention. That’s why I got this prize.

K&C have shown us the direction to take if we are to avoid falling back into loser philosophy. They have done us a service.

Further reading/listening

  • There’s a great Brain Science Podcast interview with Tony Chemero talking about the book, to be found here.

References

Minds do not extend, but activities do

I was intrigued to see that Jeff Wagman and Tony Chemero have a chapter out declaring “the end of the debate over extended cognition” (2014). “Oh, good,” I thought, “finally some sensible souls have stepped in to put an end to this nonsense.” But, alas, this chapter will not end the debate. It is merely the latest in a line of arguments declaring victory for one side.

The trouble is, the extended cognition debate is not one that can be ended by one side proving the other side wrong. The disagreement is not over empirical facts, but over a priori assumptions about what words like “mind” mean, or ought to mean. The problems here can be traced to the very first sentence in Clark and Chalmers’s (1998) paper introducing the concept of the extended mind, where they pose the question: “Where does the mind stop and the rest of the world begin?” This question commits a category mistake (one that Gilbert Ryle would have diagnosed): it assumes that minds are a kind of thing in the world that can be detected, when in fact “minds” are nothing more than labels we use to describe one another’s behaviour. The question is incoherent. To end the debate, we need to give up on this misguided search for the physical substrate of “minds”, and, instead, start to understand the world in terms of activities. I will here set out the beginnings of a case for this.

Otto’s notebook

The standard argument for the extended mind thesis is Clark and Chalmers’s thought experiment, the “Otto’s notebook” argument. Otto, who suffers from Alzheimer’s, has to write down the address for the Museum of Modern Art in his notebook and consult this note every time he wants to go there. Meanwhile, Inga, who does not suffer from Alzheimer’s, does not require this external memory aid but recalls the address using her own “biological memory”. Since Otto’s notebook is, we are assured, playing the same function as Inga’s brain, we have no reason to reject the conclusion that Otto’s notebook is literally part of his mind.

There are some severe issues with this thought experiment. Here is one. We are told that Otto has Alzheimer’s, which means he has to write things down in his notebook. Yet apparently he has no problem remembering to carry the notebook around with him at all times, or remembering how to consult it, or remembering what piece of information he is looking for, remembering what the task was that originally caused him to consult his notebook. We are to assume, I suppose, that, having once consulted his notebook and seen that MoMA is on 53rd St, Otto will happily set out from his starting point (where? we are not told, although it is stated that Inga is within walking distance), not once forgetting his purpose along the way. Otto, in short, is a perfectly functional, healthy individual, bar an unfortunate inability to remember certain facts. The form of Alzheimer’s at play here is, to say the least, unusual. This is hardly a realistic description of any actual condition.

Of course, it’s easy to be pedantic about thought experiments—to take issue with their simplifying assumptions. In this case, though, the objection is more than merely pedantic. The objection is that this particular thought experiment leaves out certain details that matter. The whole argument relies on Inga and Otto being identical except in one crucial respect: one keeps her memories on the inside (in her brain), the other keeps his memories on the outside (in his notebook). What is left out is any account of the processes by which Otto and Inga supposedly achieve their identical goals. It is merely asserted that both have “access” to their respective store of memory, and the fact that “accessing” a notebook can be described using the same verb as “accessing” one’s own memory is supposed to ensure that these are, in fact, one and the same phenomenon, and that Otto’s notebook is, therefore, part of his mind. Colour me underwhelmed.[1] The point here is: once we start to understand the processes properly, it simply won’t matter which components of the process are part of the “mind” and which components aren’t. Such labels will not be doing any explanatory work.

Jimmie’s Mass

We can contrast the vignette about Otto’s notebook with an account by Oliver Sacks of an actual neurological patient, Jimmie G., whom Sacks dubs “the lost mariner” (chapter 2 in The Man Who Mistook His Wife for a Hat; the chapter was earlier published in the New York Review of Books). Jimmie G. does not have Alzheimer’s. Sacks diagnoses him as having Korsakov’s syndrome, a memory condition caused by alcohol abuse. Jimmie has lost the ability to form new memories, and believes he is still living in 1945 following the end of the Second World War, although Sacks first meets him in the mid-1970s. Jimmie is unable to remember what happened moments before. He is trapped in a perpetual present, and is apparently, for the most part, not even aware of his condition. The turning point in Sacks’s account comes when Sacks asks whether Jimmie has, in some profound sense, lost his soul:

One tended to speak of him, instinctively, as a spiritual casualty—a “lost soul”: was it possible that he had really been “de-souled” by a disease? “Do you think he has a soul?” I once asked the Sisters. They were outraged by my question, but could see why I asked it. “Watch Jimmie in chapel,” they said, “and judge for yourself.”

I did, and I was moved, profoundly moved and impressed, because I saw here an intensity and steadiness of attention and concentration that I had never seen before in him or conceived him capable of. I watched him pray, I watched him at Mass, I watched him kneel and take the Sacrament on his tongue, and could not doubt the fullness and totality of Communion, the perfect alignment of his spirit with the spirit of the Mass. Fully, intensely, quietly, in the quietude of absolute concentration and attention, he entered and partook of the Holy Communion. He was wholly held, absorbed, by a feeling. There was no forgetting, no Korsakov’s then, nor did it seem possible or imaginable that there should be; for he was no longer at the mercy of a faulty and fallible mechanism—that of meaningless sequences and memory traces—but was absorbed in an act, an act of his whole being, which carried feeling and meaning in an organic continuity and unity, a continuity and unity so seamless it could not permit any break.

Sacks hints at an explanation of why it is that Jimmie appears to find his bearing in the taking of the Communion: ‘The same depth of absorption and attention was to be seen in relation to music and art: he had no difficulty, I noticed, “following” music or simple dramas, for every moment in music and art refers to, contains, other moments.’

What Sacks seems to suggest here is that persisting, temporally extend structures in the environment can support and give form to behaviour. The Mass has a standard structure, a structure that was present earlier in Jimmie’s life. And it was in the context of this structure that Jimmie’s behaviour came to be shaped. Jimmie learnt how to conduct himself appropriately in the context of the Mass, and this Mass-specific behaviour remains intact. Even if Jimmie cannot remember how he got into the chapel five minutes ago, he can see that he’s in a Mass, and knows what to do at any moment. But as soon as he leaves the chapel and steps outside he will find himself in a context that does not contain such a formal structure. He will find himself in a novel situation for which his behavioural repertoire is no longer appropriately shaped by past learning. He will, once again, be lost.

It would make little sense to talk about what’s going on here in terms of the extended mind (although this is precisely the kind of situation, one would think, that an extended mind concept should be applicable to). Is the Mass part of Jimmie’s extended cognitive system? No, the Mass predates Jimmie’s existence, and has had the same formal structure throughout Jimmie’s life. It is this very unchanging nature of the Mass which means that Jimmie’s behaviour can remain intact relative to it. To talk of an extended mind is to imply that activities necessarily emanate from within an individual actor. The reality is that activities constitute a setting into which animals find themselves deposited: we encounter ongoing activities from birth or even before. And it is only through exploratory action and engagement that we learn to take part in these activities, to take control of them, and to alter their course. (For a partial discussion of this focused on human emotional developmental, see Greenwood, 2013.)

Extended activities

Wagman and Chemero do not talk about Masses or notebooks. The activities they discuss are those involved in a particular type of perception research: work on dynamic touch. An important motivating insight for this work comes from Merleau-Ponty: a blind man using a cane does not perceive the cane itself but perceives the world at the end of the cane. A dynamic touch study might go like this: a subject comes into the lab, is blindfolded and laden down with a backpack and is handed a stick; the subject is then asked to use the stick to poke about at a sloped surface and is asked to give a verbal judgement about whether they will be able to stand on that surface. All good fun, and it turns out that we’re quite good at doing this sort of task. Wagman and Chemero want to use this kind of result to claim that minds do indeed extend. The results, they say, “suggest that both the weighted backpack and the handheld wooden dowel are experienced as part of the body.” But, of course, this is of no consequence to cognitivist opponents of the extended mind. It claims only that sticks can be experienced as parts of bodies. But one of the things that is at issue is whether it is reasonable to talk of minds as extending into bodies in the first place. Wagman and Chemero simply assume that it is reasonable, and want their opponents to agree with their assumption.

What these kinds of results do show is that the act of perceiving is one that necessarily spans animal and environment. It is activities that are distributed, not minds. And activities are the kinds of things that we can investigate empirically. We can take away or disrupt some component of the overall system and observe whether or not this affects the outcome of the activity. Indeed, if a given disruption has an effect on the behaviour, this is a good reason to deduce that the thing that was disturbed was an integral part of the activity, and instrumental in the individual’s control of their behaviour. But it is simply not helpful to insist that whatever is integral to an activity is therefore part of an “extended mind” or “extended cognitive system”.

The extended mind metaphor does hit on an essential truth: classical cognitivism’s view of “mind” is inadequate because it simply assumes that all behaviour (or all interesting behaviour) is the output of symbol-manipulation processes. But the fact that cognitivism is too narrow is no reason to replace one problematic use of “mind” with another that only creates new problems. The extended mind metaphor has outlived its usefulness.

Summary

  1. Beware philosophers bearing thought experiments. Especially when those thought experiments rely on tenuous claims about real-life neurological conditions. Ask this: Does my philosopher have the appropriate clinical experience to be making pronouncements on these matters?
  2. If we really want to end the debate over extended cognition, we should simply stop arguing about whether “minds” or “cognition” might “extend” into objects. This is a language game that can have no winners because the participants refuse to agree on the rules (see also Sabrina’s old post on this). Instead, we should agree that behaviour—acting in the world, engaging socially with others, and all the rest—involves activities that extend across resources both internal to and external to organisms. The task for psychologists, then, is to identify the structures that are involved in putting these activities together.

Notes

[1] For further entertaining discussion of Otto’s notebook, I recommend Jerry Fodor’s (2009) review of Andy Clark’s book.

References

  • Clark, A. & Chalmers, D. (1998) The extended mindAnalysis 58(1):7–19.
  • Fodor, J. (2009) Where is my mind? London Review of Books 31(3):13–15.
  • Greenwood, J. (2013) Contingent transcranialism and deep functional cognitive integration: The case of human emotional ontogenesis. Philosophical Psychology 26(3):420–436. doi: 10.1080/09515089.2011.633752
  • Sacks, O. (1985) The Man Who Mistook His Wife for a Hat. London: Duckworth.
  • Wagman, J. B. & Chemero, A. (2014) The end of the debate over extended cognition, in Solymosi, T. & Shook, J. R. (Eds.) Neuroscience, Neurophilosophy and Pragmatism: Brains at Work with the World. New York: Palgrave Macmillan. doi: 10.1057/9781137376077.0012